Manufacturing Flexibility: Its Need, Type, and Effects

Dharamvir Dixit

M.Tech Scholar, Department of Mechanical Engineer, School of Engineering & Technology, GTC, Bahadurgarh, Haryana (India) *dharamvirdixit@gmail.com*

Abstract

Now in the present days, when manufacturing industry is facing very competitive and challenging environment, with growing difficulty, and high levels of customisation. The unexpected events, so called disturbances invariably affect the overall performance of manufacturing system. Which can be controlled by incorporating manufacturing flexibility dimensions with respect to design, operation, and management of manufacturing system. In this presentation, an attempt has been made to through some light on manufacturing flexibility, its' type, classification, measures, and effect on the performance of manufacturing system.

Keywords: Manufacturing Flexibility Dimensions.

1. Introduction

In simple terms a manufacturing system (MS) is a combination of man, machines, material handling devices, and power source. In present era of manufacturing the effectiveness of any MS is not only based on cost, quality, and other performance measures but it is also shifting towards time based performance measures [1]. A typical MS transforms raw material into a desired shape and size consistently. There are number of unexpected events making this transformation process more complex. These unexpected events can be categorized into two categories based on their source of origination in the literature[2]:

- Disturbances originated within system boundary: resource unavailability, machine break down, etc.
- Disturbances originated from outside system boundary: variation in demand, product dimension, etc.

Despite increasing automation of MS, the human element is still an essential component[3] for any manufacturing system. Chung[4] demonstrated that success in the implementation of advanced manufacturing technology largely depends on human resource related issues. Hence, disturbances originated due to human factor should be handled very carefully. Both categories of disturbances invariably affect the overall performance of any MS. To handle these unexpected disturbances the managers

should consider / practice the concept of flexibility in design, operation, and management of MS [5]. In literature, plethora of work (theoretical, simulation based, and empirical) is reported on manufacturing flexibility (flexibility), its' dimensions, need, and effect on manufacturing system performance, etc. The presentation aims towards need, types, and effects of flexibility dimensions on the performance of manufacturing system.

2. Manufacturing Flexibility

Numerous authors tried to capture the essence of manufacturing flexibility and formulated number of definitions, some of them can be found in literature [2, 5, 8-10]. Still there is a lack of general agreement on definitions of flexibility[11]. Shewchuk & Moodie[11] found over seventy terms on flexibility, its' types and measures in the literature. Sethi and Sethi [5], in their popular survey of literature reported at least fifty terms exist for the various types of flexibilities studied. They also observed that flexibility is a complex, multidimensional, and hard-to capture concept, even several terms refer to the same flexibility type in many cases, and the definitions for flexibility types often are imprecise and conflicting, even for identical terms[9,11]. It is observed that researchers must agree that, in simplest terms:

"Flexibility is the ability to deal with change"

Change is the universal law of nature. Response of an organization to the change has a major stake in deciding the fate of the organization. That's why dealing with change is most crucial. While dealing with change, the use of inherent knowledge of experience within as well as outside the system will be highly beneficial and must be utilized. This inherent knowledge must be documented for further reference.

2.1 Flexibility Dimensions: Numerous categories and dimensions of flexibility are reported in literature. In 1984, Browne et.al[12] identified eight types of flexibility, while in 1990; Sethi and Sethi [5] envisioned the concept of eleven flexibility types, while in 2000, Vokurka and O'LearyKelly[13] observed four additional types of flexibility to be important in the context of MS. Earlier to Vokurka and O'Leary-Kelly[13], in 1991, Ramasesh and Jaykumar[14] already came up with the theory that flexibility can be in several different forms e.g.

machine, operation, routing, material handling, process, program, **3**. product, volume, expansion, labour, and material flexibilities. The definition for each of these fifteen flexibility dimensions is envisioned in Table 1. Table 2 represents the flexibility type required to handle a particular category of disturbances[19].

2.2 Measures of Various Flexibility Types: A number measurement schemes for flexibility dimension are there [5, 12, 14-20]. Gupta (1993) speculates that the cause of "so many different measurement schemes" and "lack of universal 4. Conclusions acceptance of any one scheme" is the fact that any measurement of flexibility must, because of its nature, be user or situation In the light of above discussion the following conclusions can be specific. Still the scheme of measurement of various flexibility dimensions adapted from Chen and Adam [15] is given in table 3.

2.3 Classification of Various Flexibility Dimensions: number of classification schemes for flexibility types has been given time to time on the basis of different attributes of it. Some of them are quoted below:

Taking inspiration from Pelaez-Ibarrondo and Ruiz-Mercader [21], and Koste and Malhotra[16] the ten flexibility types has been segregated as per the level where it is usually performed namely level of shop floor, plant, and individual / resource as shown in Table 4.

A classification based on management perspective is detailed in table 5.

Mandelbaum (1978) classify various flexibility dimensions into two main contexts action flexibility, where outside intervention is required before the system can respond to change, and State flexibility, where a system's capacity to respond to change is contained within the system [19]. Whereas Frazelle (1986) categorise flexibility in terms of its long and short term strategic effects [19].

Later Carlsson (1989), categorised flexibility as being either Type I or Type II as per the economic considerations [19]. In 1994, Upton, categorised flexibility as external e.g. volume, variety etc, and internal flexibility e.g. Process, Material handling etc [19].

2.4 Linkage Between Eleven Flexibility Types: Earlier a linkage among his eight flexibility dimensions is given by Browne et al [12]. In 1990, Sethi and Sethi [5] prescribed the linkage among eleven flexibility dimensions, the same is reproduced in figure 1.

Effect of Flexibility Manufacturing on System Performance

It is well accepted that introduction of flexibility improves the performance of a manufacturing system. A plethora of literature (both empirical / simulation and modelling based) is available on the effect of manufacturing flexibility. Some of them is tabulated in table 6.

made:

- It is also observed flexibility dimension could not work in isolation. It has an impact on other flexibility dimension(s) too. A firm may benefit more from a good mix of various flexibility dimensions rather an exclusive use of a single type of flexibility. From the literature [1, 23,31-34], it is clear that up to a particular level of flexibility, the system performance increases with the increase in degree of flexibility. Increase in degree of flexibility beyond this threshold value, deterioration in system performance starts and makes it even worse. It would be beneficial to study the impact of different degrees of a particular flexibility dimension on the system performance in isolation as well as in a group of all / major flexibility dimension(s).
- Estimation of the impact a given flexibility dimension on system performance as well as on other flexibility dimensions will be useful for both the design and operation of FMS. Return on investment is one of the basic and foremost criteria for adoption of any newer technology. For identifying conditions & opportunities, for which flexibility can drive the maximum benefits, Prioritisation of various flexibility dimensions on the basis of effect on the system performance is required.
- It seems that it is a reactive concept, not proactive. Though, a number of studies are available, still the need of an exhaustive, systematic and updated study is there.

Table 1 Definitions of fifteen flexibility types / dimensions

S.NO.	Flexibility Dimension	Definition
1	Machine [5,12,13,15, 16,18]	Machine's ability to perform a range of operations without incurring any major setup
2	Process	System's ability to

	[5,13,15,17-	produce a given set of part
	19]	types in different ways
		possibly with different
		material
3	Operations	Ability to produce a
	[5,9,12,13,1	component / product by
	5,16,18]	interchanging the order of
		processes
4	Product	System's ability to
	[5,12,13,15,	substitute, change over or
	18]	add new (set of) part(s),
	- 1	efficiently
5	Routing	System's ability to have
5	[5,12,13,15,	number of alternative
	16,18]	paths within the system,
	10,10]	by which a part could be
		made
6	Volume	
0		System's ability to operate at range of different output
	[5,12,13,15-	0
7	18]	levels economically
7	Production	System's ability to
	[5,9,12,13,1	produce a plethora of
	5,18] (Product	products without adding
_	mix)	new equipment
8	Expansion	Ease at which capacity
	[5,12,13,15,	and capability of the
	16,18]	system may be enhanced
9	Material	Capability of Material
	Handling	handling system to move
	[5,9,13,16-	and position different parts
	18]	throughout the MS
10	Program	Capability of system to
	[1,13,18]	operate / run unattended
		for a long period of time
11	Market	Adaptability and
	[5,13,18]	responsiveness to the
	_	changing market
		environment
12	Automation	Level at which flexibility
	[5]	is incorporated in the
		automation
		/computerization of
		manufacturing
		technologies
13	New Design	Ability to design and
15	[5]	introduce new product
		into the system well
		before time
14	Delivery [5]	
14	Delivery [5]	Responsiveness of the
		system towards changes in
		delivery requests

15	Labour [5,9,14,16,18,22]	Multitasking ability of labour/ man power i.e.
		within the MS without sacrificing the efficiency

 Table 2: Disturbance and required flexibility dimension to handle it

Disturbances		Description	Required Flexibility
Inside	Human Factor	Absenteeism, Lack of training, etc	Labour, Program, Automation
	Others	Machine breakdown, Information flow, etc	Machine, Material Handling, Routing, Operations, Process
Outside		Consumer, Demand, Competitor, Society, Government Regulation & Policies etc	Production, Delivery, Volume, Labour, Market, Expansion, New Design

Table 3: Various flexibility types and their measures

Flexibility Type	Measure
Machine Flexibility	Time to replace worn-out or broken cutting tools, time to change tools in tool magazine to produce a different subset of the given part types, time to assemble or movement of the new fixtures required.
Process Flexibility	Number of part types that can simultaneously be processed without using batches.
Product Flexibility	Time required to switch from one part mix to another, not necessarily of the same part types.
Routing Flexibility	Robustness of the FMS when breakdowns occur the production rate does not decrease dramatically and parts continue to be processed.

Volume Flexibility	The smallest volume can be for all part types with the FMS that still being run profitably.
Expansion Flexibility	The magnitude of the FMS can become.
Operation Flexibility	The number of alternate operation orders for each part type that the FMS can accommodate.

Table 4: Flexibility dimensions classified on the basis of management perspective

Nature	Definition	Example
Strategic: Long Term	Ability of a system to respond to: market changes, changes in strategy, new product introduction and basic design changes	Market, New product
Tactical : Mid Term	Ability to operate at varying rates, to handle a variety of parts of known basic design, to accept random, minor changes and to convert the plant for alternative use	Part-mix, Volume
Operational: Short Term	Ability to reset and readjust between known production tasks, to permit a high degree of variation in sequencing and scheduling, etc	Routing, Operation, Material Handling

Table 5: Summary of effect of various flexibility typesmanufacturing system performance

S. No	Flexibility Type	Researcher	Major Findings / Conclusions
1	Routing Flexibility	Takano T. Mizukava H., &Mizoguchi K., 1991[23]	Just having 2 or 3 alternative machines, would greatly increase the flexibility and performance of the system. Contributions of having more than 3 alternative machines would be very small.

	X7 . 1	Marta IZI a	Mana 1 and
2	Volume	MoutazKhouj	More volume
	Flexibility	a,	flexible a system, the
		1995[24]	larger the optimal
			production lot size
			and the smaller the
			optimal production
			rate.
3	Routing	Albino,& A.	Routing flexibility
	Flexibility	C.	can be effectively
		Garavelli,	used to increase
		1998[25]	productivity
4	Flexibility	Subhash	Deterioration in
	and	Wadhwa, and	make-span
	Decision	RajatBhagwat,	performance is
	Delays	1998[26]	observed with an
			increase in decision
			delays, and this
			deterioration is
			higher at higher
			levels of flexibility.
			Flexibility and
			decision delays will
			interact in such a
			way that, beyond
			certain level of
			decision delays, their
			cumulative effect
			will be to reduce the
			performance of the
			system.
5	Routing	Felix T S	Increasing routing
	Flexibility	Chan,	flexibility cannot be
		2001[27]	treated as a key role
			in the system
			improvement.
			In most situations,
			upto a certain level
			of routing flexibility,
			system performance
			will improve with the
			increase in the level
			of routing flexibility,
			beyond this optimal
			flexibility level, the
			system performance
			does not show any
			improvement, but it
			starts being worse.
6	Volume	Jack, and	Volume flexibility
	Flexibility	Raturi,	has a positive impact
		2002 [28]	on performance

IJESPR www.ijesonline.com

7	Operation	Felix T S	Alteration in the				constant total
	Flexibility,	Chan	dispatching rules has				demand, most
	Dispatchin	2004 [29]	a more significant				significantly if the
	g		effect on the				total demand is
	Rules, and		performance of the				larger than the
	Combinati		FMS model than				system's capacity.
	0		changing the levels				-)
	n of the		of operation				
	above two		flexibility. The role				
	factors		of increasing the	10	Partial	A Muriel,A	Partial flexibility can
			operation flexibility	10	Manufactur	Somasundara	lead to a significant
			should not be taken		ing	m, &Y.Zhang,	increase in
			as the key direction		Flexibility	2006 [28]	production
			for performance		Themesiney	2000 [20]	variability
			improvement of the				Distributed tactical
			FMS.				capacity allocation
			The Shortest				policies, which
			Remaining				evenly allocate
			Processing Time rule				demand to the plants,
			is found to be the				lead to better
			best among the six				performance of the
			dispatching rules in				flexible system.
			the current study.	11	Labor	S. M.	With limited labor
			Although none of the		Flexibility	Horn	resources, mixed
			level of operation			g,	labor assignment
			flexibility can claim			2007[29]	directly and
			to be the best among				indirectly improves
			the six levels				the performance
8	Product,	S. Wadhwa,	The Comparative				within a cell.
	Transforma	· · ·	study indicates that				This study indicates
	ti	F.T.S.	among the three,				that when more than
	on,	Chan, 2005[8]	product flexibility				70 % of the skills are
	an		has the greatest				shared by all of the
	d		influence followed				operators requiring
	Sequencing		by transformation				higher training costs,
	Flexibility		flexibility and the				system performance
			sequencing				does not improve
0	Due 1 st		flexibility in order.				significantly.
9	Product Mix	Charu Charu dua	Increasing product	12	Machine	Adil	Effect of machine
	Flexibility	Chandra, Mark Everson,	mix flexibility marginally affects		Flexibility,	Baykasoglu,	flexibility on job
	THEADING	J,anisGrabis,	the level of total		and	&	shop performance is
		2005[27]	demand at which		Process	Lale	higher than the
		2005[27]	production becomes		Plan Flovibility	Ozba	process plan flovibility. It is also
			profitable, under the		Flexibility	kır,	flexibility. It is also
			specific scenarios			2008[12]	figured out that after a certain level of
			considered.				machine flexibility,
			Meanwhile,				the speed of
			increasing product				scheduling
			mix flexibility				performance
			improves				improvement
			profitability given a				decreases
L	<u> </u>		promuonity given a				ucitases

IJESPR www.ijesonline.com

Routing Flexibility, Sequencing Flexibility, and Part Sequencing Rules	O. A. Joseph & R. Sridharan, 2011[31,32]	considerably. No routing flexibility present in the system, sequencing flexibility leads to an improvement in all the performance measures The deterioration in system performance can be minimized substantially by incorporating either routing flexibility or sequencing flexibility or both. However, the benefits of either of	15	Labor Flexibility	Sawhney R, 2013[35]	Impact of acquired labor flexibility on plant performance is not direct but experienced through the sophistication of labor flexibility implementation exercised by the plant. Findings also suggested that plants that emphasized process-focused training, provided greater job-rotation training, and designed positive reward structures, acquired higher labor flexibility and plant performance
Routing	A. K.	these flexibilities diminish at higher flexibility levels Beyond a suitable	Compone	nt or Basic	System	exibility dimensions
Flexibility	Chauhan, 2013[30]	flexibility and pallet level, system performance deteriorates, as indeed by the make	Flexi	bilities	Flexibilities Organizational Structure	Flexibilities
		judged by the make- span measure of performance Continuous reduction in make-span time with increase in routing flexibility at a fixed level of delay time. When routing flexibility is further increased, the variability in make-	Materia	achine Il Handling eration	Process Routing Product Volume Expansion	Program Production Market

References

- [1] Chan F.T.S., Bhagwat R., and Wadhwa S., "Increase in Flexibility: Productive or Counterproductive? A Study on The Physical and Operating Characteristics of A Flexible Manufacturing System", Int. J. of Production Research, Vol. 44, No. 7, April 2006, pp.1431-1445.
- [2] Carlos Rafael Gomez Valdez, "The Impact of Manufacturing Flexibility on System Performance - A Simulation Based Approach", 2010, Ph. D. Thesis, University of Nottingham, Nottingham, USA,
- [3] Hwang S. L., Barfield W., Chang T. C., and Salvendy G., "Integration of Humans and Computers in The Operation [18] Peláez-Ibarrondo J. J., and Ruiz-Mercader J., "Measuring and Control of Flexible Manufacturing Systems". Int. J. of Production Research, Vol. 22, 1984, pp.841-856.
- [4] Chung C., "Human Issues Influencing the Successful Implementation of Advanced Manufacturing Technology". J. of Eng. and Tech. Management, Vol. 13, 1996, pp.283- [19] Cesani' V. I., and Steudel H. J., A Study of Labor 299
- [5] Sethi A. K. and Sethi S.P., "Flexibility in Manufacturing: A Survey", Int. J. of Flex. Manuf. Systems, Vol. 2, 1990, pp. [20] Morito S., Takano T., Mizukawa H., and Mizoguchi K., 289-328
- [6] Wadhwa S., Rao K. S., and Chan F. T. S., "Flexibility-Enabled Lead-Time Reduction in Flexible System", Int. J. of Production Research, Vol. 43, No. 15, 2005, pp. 3131–3163
- [7] Wadhwa, S., and Browne, J., "Modeling FMS with Petrinets", Int. J. of Flex. Manuf. Systems, Vol. 1, pp. 255- [21] Khouja M, The Economic Production Lot Size Model Under 280, 1989
- [8] Shewchuk J. P., & Moodie C. L., "Definition and Classification of Manufacturing Flexibility Types and [22] Garavelli A. C., & Albino V., Some Effects of Flexibility Measures", The Int. J. of Flex. Manuf. Systems, Vol. 10, 1998, pp. 325-349.
- [9] Browne J., Dubois D., Rathmill K., Sethi S. P., and Stecke K. E., "Types of Flexibilities and Classification of Flexible Manufacturing Systems", Divison of Research, Graduate School of Business Administration, The University of Michigan, Working February 1984, Paper No. 367
- Empirical Research on Manufacturing Flexibility", J. of Operations Management, Vol 18, pp. 485–501, 2000
- Manufacturing Flexibility: a Value Based Approach", J. of Oper. Management, Vol. 10, No. 4,446-468, 1991
- [12] Chen F. F., and Adam E. E. Jr, "The Impact of Flexible [26] Chandra C., Everson M., & GrabisJ., Evaluation of Manufacturing Systems on Productivity and Quality", IEEE Trans. on Eng, Management, Vol. 38, No. 1, February 1991, pp. 33-45
- for Analyzing the Dimensions of Manufacturing Flexibility", 1999, J. of Operations Management, Vol. 18, pp. 75-93

- [14] Derrick E. D'Souza, and Fredrik P. Williams, "Toward a Taxonomy of Manufacturing Flexibility Dimensions", J. of Operations Management, Vol. 18, 2000, pp.577–593
- [15] Chang A. Y., "Prioritising The Types of Manufacturing Flexibility in An Uncertain Environment", Int. J. of Production Research, Vol. 50, No.8, 2012, pp 2133-2149,
- [16] Beach R., Muhlemann A. P., Price D. H. R., Paterson A., and Sharp J. A., "A Review of Manufacturing Flexibility", European J. of Operational Research, 122, pp. 41-57, 2000
- [17] Gupta Y. P. and Goyal S., "Flexibility of Manufacturing Systems: Concepts and Measurements", European J. of Operational Research, 43, 1989, pp. 119-135
- Operational Flexibility", Manuf. Information Systems, Proceedings of The Fourth SME SME Int. Conference, 2001,http://citeseerx.ist.psu.edu/viewdoc/download?doi=10. 1.1.110.7993&rep=rep1&type=pdf
- assignment Flexibility in Cellular Manufacturing Systems, Computers & Industrial Engineering, 48, 2005, pp. 571–591
- "Design and Analysis of a Flexible Manufacturing System Simulation-Effects of Flexibility with on FMS Performance", Proceedings of the 1991 Winter Simulation Conference, Phoenix, AZ, USA, 1991, pp. 294-301, 8-11 Dec.
- Volume Flexibility, Computers Operations Research. Vol. 22, No. 5, 1995, pp. 515-523
- and Dependability on Cellular Manufacturing System Performance, Computers ind.Engng Vol. 35, No 3-4, 1998 pp. 491-494
- Wadhwa, S., & Bhagwat, R, Judicious Increase in Flexibility [23] and Decision Automation in Semi-computerized Flexible Manufacturing (SCFM) Systems. Studies in Informatics and Control, Vol.2, No. 8, 1998
- [10] Vokurka R. J., and O'Leary-Kelly S. W., "A Review of [24] Raturi A., & Jack E. P., Sources of volume flexibility and their impact on performance, Journal of Operations Management, Vol. 20,2002 pp.519-548.
- [11] Ramasesh R. V., and Jayakumar M. D., "Measurement of [25] Chan F. T. S., Sources of volume flexibility and their impact on performance, International Journal of Advance Manufacturing Technology, Vol. 24, 2004, pp. 447-459
 - Enterprise-level Benefits of Manufacturing Flexibility, Omega International Journal of management Science, Vol. 33, 2005, pp.17 - 31
- [13] Koste L. L., and Malhotra M. K., "A Theoretical Framework [27] Muriel A., Somasundaram A., Zhang Y., Impact of Partial Manufacturing Flexibility on Production Variability, MSOM vol. 8, Spring 2006,192-205

- [28] Horng S. M., A Study of Labor Assignments In Cellular Manufacturing Systems, 19th 2007, International Conference on Production Research
- [29] Chauhan A. K., Performance Evaluation Of Flexible System Of Integrated Manufacturing, VSRD International Journal of Mechanical, Civil, Automobile and Production Engineering, Vol. 3 No. 3 March 2013 pp71-76
- [30] Joseph O. A., and Sridharan R., "Effects of Routing Flexibility, Sequencing Flexibility and Scheduling Decision Rules on the Performance of a Flexible Manufacturing System", Int. J. of Advance Manuf. Technology, Vol. 56, 2011, pp. 291-306
- [31] O.A. Joseph, and R. Sridharan, "Effects of Flexibility and Scheduling Decisions on the Performance of An FMS: Simulation Modelling and Analysis", Int. J. of Production Research, DOI:10.1080/00207543.2011.575091, 2011 pp. 1-21
- [32] AdilBaykasoglu, and LaleOzbakır, "Analysing the Effect of Flexibility on Manufacturing Systems Performance", J. of Manuf. Technology Management, Vol. 19 No. 2, 2008, pp. 172-193,
- [33] Chan F. T. S., "The Effects of Routing Flexibility on A Flexible Manufacturing System", Int. J. of Computer Integrated Manuf., Vol. 14, No.5, 2001, 431-445,